Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 11, 2026
-
Abstract Multi-year marine heatwaves (MHWs) in the Gulf of Alaska (GOA) are major climate events with lasting ecological and economic effects. Though often seen as local Pacific phenomena, our study shows their persistence depends on trans-basin interactions between the North Pacific and North Atlantic. Using observational data and climate model experiments, we find that prolonged MHWs occur as sequential warming episodes triggered by atmospheric wave trains crossing ocean basins. These wave trains alter surface heat flux, initiating MHWs in the GOA and changing North Atlantic sea surface temperatures (SSTs). In turn, Atlantic SST anomalies reinforce wave activity, fueling subsequent MHW episodes in a feedback loop. This mechanism appears in historical events (1949–52, 1962–65, 2013–16, and 2018–22), highlighting MHWs as a trans-basin phenomenon. Our findings link GOA MHWs to trans-basin atmospheric wave dynamics and identify North Atlantic SSTs as a potential predictor of their duration.more » « less
-
Materials composed of spin-1 antiferromagnetic (AFM) chains are known to adopt complex ground states that are sensitive to the single-ion-anisotropy (SIA) energy ( ), and intrachain ( ) and interchain ( ) exchange energy scales. While theoretical and experimental studies have extended this model to include various other energy scales, the effect of the lack of a common SIA axis is not well explored. Here we investigate the magnetic properties of , a chain compound where the tilting of Ni octahedra leads to a twofold alternation of the easy-axis directions along the chain. Muon-spin relaxation measurements indicate a transition to long-range order at and the magnetic structure is initially determined to be antiferromagnetic and collinear using elastic neutron diffraction experiments. Inelastic neutron scattering measurements were used to find , and a rhombic anisotropy energy . Mean-field modeling reveals that the ground state structure hosts spin canting of , which is not detectable above the noise floor of the elastic neutron diffraction data. Monte Carlo simulation of the powder-averaged magnetization, , is then used to confirm these Hamiltonian parameters, while single-crystal simulations provide insight into features observed in the data. Published by the American Physical Society2025more » « less
-
none (Ed.)Abstract By utilizing bicontinuous and nanoporous ordered nanonetworks, such as double gyroid (DG) and double diamond (DD), metamaterials with exceptional optical and mechanical properties can be fabricated through the templating synthesis of functional materials. However, the volume fraction range of DG in block copolymers is significantly narrow, making it unable to vary its porosity and surface‐to‐volume ratio. Here, the theoretically limited structural volume of the DG phase in coil‐coil copolymers is overcome by enlarging the conformational asymmetry through the association of mesogens, providing fast access to achieving flexible structured materials of ultra‐high porosities. The new materials design, dual‐extractable nanocomposite, is created by incorporating a photodegradable block with a solvent‐extractable mesogen (m) into an accepting block, resulting in a new hollow gyroid (HG) with the largely increased surface‐to‐volume ratio and porosity of 77 vol%. The lightweight HG exhibits a low refractive index of 1.11 and a very high specific reduced modulus, almost two times that of the typical negative gyroid (porosity≈53%) and three times that of the positive gyroid (porosity≈24%). This novel concept can significantly extend the DG phase window of block copolymers and the corresponding surface‐to‐volume ratio, being applicable for nanotemplate‐synthesized nanomaterials with a great gain of mechanical, catalytic, and optoelectronic properties.more » « less
-
Poleward migration is an interesting phenomenon regarding the shift of Tropical Cyclones (TCs) towards higher latitudes. As climate warms, TCs’ intensification is promoted, and yet over certain oceans, TCs may also migrate poleward into colder waters. To what extent this poleward shift can impact future TC’s intensification is unclear, and a quantitative understanding of these competing processes is lacking. Through investigating one of the most likely TC basins to experience poleward migration, the western North Pacific (WNP), here we explore the issue. Potential Intensity (PI, TC’s intensification upper bound) along TC’s intensification locations (from genesis to the lifetime maximum intensity location) are analysed. We find that poleward migration can partially cancel global warming’s positive impact on future WNP TC’s intensification. With poleward migration, the PI increasing trend slope is gentler. We estimate that poleward migration can reduce the increasing trend slope of the proportion of Category-5 PI by 42% (22%) under a strong (moderate) emission pathway; and 68% (30%) increasing trend slope reduction for the average PI.more » « less
-
Abstract The occurrence of super typhoons outside the normal typhoon season can result in devastating loss of life and property damage. Our research reveals that the 11-year solar cycle can affect the incidence of these off-season typhoons (from November to April) in the western North Pacific by influencing sea surface temperature (SST) through a footprint mechanism. The solar cycle, once amplified by atmospheric and ocean interactions, generates a noticeable SST footprint in the subtropical North Pacific during winter and spring, which eventually intrudes into the tropical central Pacific and affects the atmospheric conditions, resulting in an increase or decrease in the occurrence of super typhoons during active or inactive solar periods. This mechanism has become more effective since the Atlantic Multi-decadal Oscillation (AMO) shifted to a warm phase in the 1990s, intensifying the subtropical Pacific couplings. An example of this type of off-season super typhoon during an active solar period is Typhoon Haiyan in 2013. By incorporating information about the solar cycle, we can anticipate the likelihood of super typhoon occurrences, thus improving decadal disaster preparation and planning.more » « less
-
Abstract The effect of tropical cyclone (TC) size on TC-induced sea surface temperature (SST) cooling and subsequent TC intensification is an intriguing issue without much exploration. Via compositing satellite-observed SST over the western North Pacific during 2004–19, this study systematically examined the effect of storm size on the magnitude, spatial extension, and temporal evolution of TC-induced SST anomalies (SSTA). Consequential influence on TC intensification is also explored. Among the various TC wind radii, SSTA are found to be most sensitive to the 34-kt wind radius (R34) (1 kt ≈ 0.51 m s−1). Generally, large TCs generate stronger and more widespread SSTA than small TCs (for category 1–2 TCs, R34: ∼270 vs 160 km; SSTA: −1.7° vs −0.9°C). Despite the same effect on prolonging residence time of TC winds, the effect of doubling R34 on SSTA is more profound than halving translation speed, due to more wind energy input into the upper ocean. Also differing from translation speed, storm size has a rather modest effect on the rightward shift and timing of maximum cooling. This study further demonstrates that storm size regulates TC intensification through an oceanic pathway: large TCs tend to induce stronger SST cooling and are exposed to the cooling for a longer time, both of which reduce the ocean’s enthalpy supply and thereby diminish TC intensification. For larger TCs experiencing stronger SST cooling, the probability of rapid intensification is half of smaller TCs. The presented results suggest that accurately specifying storm size should lead to improved cooling effect estimation and TC intensity prediction.more » « less
-
Abstract Tropical Cyclones (TCs) are devastating natural disasters. Analyzing four decades of global TC data, here we find that among all global TC-active basins, the South China Sea (SCS) stands out as particularly difficult ocean for TCs to intensify, despite favorable atmosphere and ocean conditions. Over the SCS, TC intensification rate and its probability for a rapid intensification (intensification by ≥ 15.4 m s−1day−1) are only 1/2 and 1/3, respectively, of those for the rest of the world ocean. Originating from complex interplays between astronomic tides and the SCS topography, gigantic ocean internal tides interact with TC-generated oceanic near-inertial waves and induce a strong ocean cooling effect, suppressing the TC intensification. Inclusion of this interaction between internal tides and TC in operational weather prediction systems is expected to improve forecast of TC intensity in the SCS and in other regions where strong internal tides are present.more » « less
An official website of the United States government

Full Text Available